This Week In The Lab

Leavin’ on a jet plane

I’m terribly sad to be leaving this beautiful city and a new assemblage of friends and colleagues who I will forever cherish. My time at UNSW has been eye opening in so many ways, from the culture of collaboration in my host lab and department, to the suite of new critters I encountered (link), to the daily evidence of ecology and evolution that abound when one first becomes acquainted with life in the opposite hemisphere (link). My EAPSI host, Emma Johnston, has provided inspiration and ideas that will keep me motivated for much time to come. With luck, that motivation will be matched with interesting findings from the stable isotope and genetics data we’ve collected.

Top: Sydney Opera House as seen while underway to Gore Cove, one of our field sites. Bottom: Side of our SIMS-based research vessel, heading west past the opera house and towards Balmain, another inner-harbor site.

Standard
This Week In The Lab

So. Many. Tiny. Cups.

Henna Wilckens preparing stable isotope samples

So. Many. Tiny. Cups. That’s the conclusion today after my first foray into stable isotope analysis with Henna. Though I must admit, chemistry was my least favorite subject in my early years, with a few years more wisdom, its benefits have become evident. Stable isotope analysis is a tool that allows us to measure the relative weight of carbon and nitrogen in freeze dried tissue samples. The weight of carbon helps us discern the original source of primary productivity in the tissue sample of interest. For instance, organisms that feed on suspended phytoplankton, such as diatoms, should have a different carbon isotope signal than organisms that feed on seaweed, this signal is proliferated up through each subsequent level in the food web. The weight of nitrogen in an organism’s tissue is correlated with its trophic level, or its position in the food web. Organisms that are higher order consumers such as sharks will have a heavier isotopic nitrogen signal than lower order consumers such as sea urchins.

Next, it’s off to the mass spectrometer for these little samples. Within a few weeks, we hope to have data back which give us a first look into how food web structure compares between natural and man-made shorelines in Sydney Harbor.

The tiny cups and tweezers used to prepare stable isotope samples

Standard